大数据分析工具有:R-编程 R 编程是对所有人免费的最好的大数据分析工具之一。它是一种领先的统计编程语言,可用于统计分析、科学计算、数据可视化等。R 编程语言还可以扩展自身以执行各种大数据分析操作。
在处理大数据分析时,选择合适的集成方法至关重要。对于简单的Hadoop MapReduce作业,R和Hadoop Streaming仍然是最佳解决方案。R和Hadoop的结合提供了快速、预测性分析所需的关键性能、可伸缩性和灵活性,成为大数据专业人士的必备工具包。
开发大数据分析有以下方式:个人需要学习相关的技术和工具,如Python、R语言、Hadoop、Spark等同时需要熟悉数据分析的基本理论和方法,如数据清洗、数据挖掘、机器学习等。还需要有足够的数据资源和计算资源,才能完成复杂的数据分析任务。
会使用Hive的SQL方法HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大数据集合。知道Hive如何在Hadoop生态系统进行数据分析工作。(2)会一些SPSS modeler基础应用,这部分技能对应数据建模分析师。
Pythom语言:Python结合了R语言的快速,处理复杂数据的能力以及更务实的语言特质,迅速地成为主流,也更简单和直观了,尤其是近几年的成长很快。在数据处理范畴内,通常在规模与复杂之间要有个取舍,Python以折中的姿态出现,是相当好的数据处理工具。
处理一般主要用的有如下语言:R语言:为统计人员开发的一种语言,可以用R语言构建深奥的统计模型、数据探索以及统计分析等;Python语言:Python是数据分析利器,使用Python进行科学计算可以提高效率,Python可以替代Excel进行更高效的数据处理。
Java Java与大数据的关系非常密切,目前做大数据开发的程序员很多都是从Java程序员转过去的,Hadoop平台本身就是基于Java开发的。大数据开发在spark平台下,很多程序员更愿意使用scala语言,而scala就是基于Java语言构建的。
两者均可,但相较而言,python比java简单易用 对于初学者,尤其是没有接触过语言的人想入门大数据,个人觉得先学python,后学java。首先python作为一门脚本语言,很容易入门。编程并不是说掌握一门或几门语言就足够了,重在提高思维能力。